Review Problems

January 13, 2017

- 1. (Fall 2004, Exam 1, #4) If θ is the angle between $\mathbf{i} + \mathbf{j} \mathbf{k}$ and $2\mathbf{i} \mathbf{j}$, then find $\cos^2 \theta$.
- 2. (Fall 2004, Exam 1, #5) Find the scalar projection of $\mathbf{b} = \langle 1, -1, 1 \rangle$ onto $\mathbf{a} = \langle 2, 1, 2 \rangle$.
- 3. (Fall 2006, Exam 1, #4) Let $\vec{a} = (-5, 4, 3)$ and $\vec{b} = (-1, -1, -2)$. Which of the following are true?
 - I. $\operatorname{comp}_{\vec{a}}\vec{b} = -5/\sqrt{50}$
 - II. $\operatorname{comp}_{\vec{b}}\vec{a} = -5/\sqrt{50}$
 - III. $\operatorname{comp}_{\vec{b}}\vec{a} = -5/\sqrt{6}$
 - IV. $\operatorname{comp}_{\vec{a}}\vec{b} = -5/\sqrt{6}$
- 4. (Fall 2007, Exam 1, #5) Sal, the mule, hauls a barge up the Erie Canal. A rope is attached to the barge at an angle of 30 degrees to the direction of the canal, and Sal pulls the rope with a force of magnitude F as she trots along. Supposing they cover distance D, how much work is done by Sal?
- 5. (Fall 2008, Exam 1, #4) Evaluate
 $(\vec{i}+\vec{j}+\vec{k})\cdot(\vec{i}-2\vec{j}-2\vec{k})$
- 6. (Fall 2009, Exam 1, #2) Find $\text{proj}_{\mathbf{a}}\mathbf{b}$ where $\mathbf{a} = \langle -1, -1, 2 \rangle$ and $\mathbf{b} = \langle 2, 2, -1 \rangle$.
- 7. (Fall 2009, Exam 1, #5) A force $\mathbf{F} = \mathbf{i} + 4\mathbf{j} 2\mathbf{k}$ is applied to an object that moves from the point P(1, 2, 0) to the point Q(0, 5, 4). Find the work done.